

Thai Water Expo 2021

Regional Water Talks 2021 (Thailand)

Water Balance Assessment and National Water Management Guidelines

Assoc.Prof.Bancha Kwanyuen (Ph.D.)

Department of Irrigation Engineering

Faculty of Engineering at Kamphaeng Saen, Kasetsart University

5th August 2021

The Four Pillars: Concept for Management

The 20 Year Water Resources Master Plan

Water for production (Agri + Ind) **Domestic Use** Flood management Develop water storage and delivery Improve drainage capacity Provide clean water for all system Integrated land use planning: villages, cities, tourist hotspot Develop alternative water sources and economic zone Rain harvesting Increase water use efficiency Provide sufficient water for map Prevention of city/ community water-scarcity area logging flood Provide clean drinking water at Building resilience in risk area the reasonable price Water quality and conservation • Prevent and reduce point source Management Construct community wastewater • Institute, Laws treatment plant

- Reuse and recycle
- Allocate sufficient water for ecosystem services
- Natural watercourse restoration and renovation

Watershed conservation

- Upstream forest restoration
- Prevent soil erosion in highly steep agricultural area

waterways schematics vs. land use

- International cooperation and finance
- Data and Monitoring system
- Participation approach
- R&D, KITs

Institutional Framework for Water Resources Management

5

What are new? (Water Law)

Waterways Plan (Schematic)

River Basin Identification

The Prime Minister, Minister of MOAC, Minister of MNRE and Minister of MOI shall have responsibility and control for the execution of this Act, and shall have the authority to appoint an officer and issue a Ministerial Rule for the purpose of he execution of this Act

Institutional Framework

- ✓ National Water Resources Committee
- River Basin and River Basin Committee
- Water User Association

Special National Command Centre for

Water Crisis

Hub of International Water Corporation

Bilateral	Multilateral	Organisation/ MDE
America	ACMECS	ASEAN
USA	LMC	Asia Water Council
	LMI	UN (FAO, UNDP,
Asia-Oceania	MRC	UNEP, UNESCO, UNFCCC, WHO etc.)
Australia		World Bank
China		
Israel		
Japan		
Korea		
Europe		
France		
Germany		
Hungary		
Netherlands		

The Power of Partnership

Adaptation of Integrated Water Resources Management to National Water Management

General framework for IWRM

Example of Policy on Water Resources Management

Priority of Water Allocation Plan for water demand according to water supply in

Greater Chaophraya Basin

"Water must be sufficient for dry season and the residual should be enough for water use in the early of wet-season and water security of the coming year."

Water Supply and Reservoir Storage in Thailand

National and Regional Surface water, Water storage and Water Demand of Thailand

Water Security to support SDG

SDG 6.5 (and IWRM)

Index of water security

Effect of Climate Change to Delta Area of Costal River Basin

Figure 1. Relative vulnerability of coastal delta populations as indicated by population potentially displaced by current sea-level trends to 2050, including local effects. Extreme > 1 million people, high = around 500,000 people, and medium is > 5000 people potentially displaced (Source: IPCC 2007a, based on Ericson et al., 2005).

Thailand River Basin

25 Basin (Old)

Code	25 Basin (Old)
01	Salawin
02	Khong
03	kok
04	Chi
05	Mun
06	Ping
07	Wang
08	Yom
09	Nan
10	Chao Phraya
11	Sakae Krang
12	Pasak
13	Tha Chin
14	Mae Klong
15	Prachinburi
16	Bang Pakong
17	Tonle Sap
18	East Coast Gulf
19	Phetchaburi
20	Prachuap Khiri Khan Coast
21	Peninsula - East Coast
22	Mae Nam Tapi
23	Thale Sap Songkhla
24	Mae Nam Pattani
25	Peninsula - West Coast

Code	22 Basin (New)
01	Salawin
02	North Khong
03	Northeast Khong
04	Chi
05	Mun
06	Ping
07	Wang
08	Yom
09	Nan
10	Chao Phraya
11	Sakae Krang
12	Pasak
13	Tha Chin
14	Mae Klong
15	Bang Pakong (15 + 16)
16	Tonle Sap
17	East Coast Gulf
18	Phetchaburi - Prachuap Khiri Khan (19 + 20)
19	Peninsula - Upper East Coast (21 + 22)
20	Thale Sap Songkhla (23)
21	Peninsula - Lower East Coast (21 + 24)
22	Peninsula - West Coast

The Chao Phraya River Basin

Rainfall and Runoff in The Chao Phraya River Basin

- Average annual rainfall

- = 1,163 (mm/year)
- Sum of average annual runoff =

49,823 (MCM)

Basin	Average Annual Rainfall (mm)	Average Annual Runoff (MCM)	
Ping	1,146	11,187	
Wang	1,113	1,874	
Yom	1,179	5,261	
Nan	1,237	17,454	Mai
Sakae Krang	1,250	1,479	
Pasak	1,185	5,096	
Tha Chin	1,023	3,247	
Chao Phraya	1,099	4,225	

Source : Office of the National Economic and Social Development Council (2017)

Majority of surface water are from Nan and Ping Rivers.

Water Balance in The Chao Phraya River Basin (2017)

More than 70% of demand is agriculture.

Source : Office of the National Economic and Social Development Council (2017)

Water Balance in The Chao Phraya River Basin (2017)

Water Balance :

STHAIWATER

KU

KASETSART UNIVERSITY

rainy season

Basin	Water List	Average Water List		MCM)
		rainy season	dry season	Year
	Water Supply	10,464	2,581	13,045
Ping	Water Demand	1,592	1,978	3,570
	Water Balance	8,872	603	9,475
Wang	Water Supply	2,304	548	2,852
	Water Demand	231	275	506
	Water Balance	2,073	273	2,346
Yom	Water Supply	7,852	1,851	9,703
	Water Demand	2,341	1,809	4,150
	Water Balance	5,511	42	5,553

Desta	XX 7-4 X •-4	Average Wat	ter Volume (MCM)
Basin	water List	rainy season	dry season	Year
	Water Supply	14,360	6,728	21,088
Nan	Water Demand	1,594	2,053	3,647
	Water Balance	12,766	4,675	17,441
	Water Supply	4,727	777	5,504
Pasak	Water Demand	640	759	1,399
	Water Balance	4,087	18	4,105
	Water Supply	1,523	292	1,815
Sakae Krang	Water Demand	253	364	617
	Water Balance	1,270	-72	1,198

Deale		Average Water Volume (MCM		
Basin	water List	rainy season	dry season	Year
	Water Supply	4,609	574	5,183
Tha Chin	Water Demand	5,959	7,972	13,931
	Water Balance	-1,350	-7,398	-8,748
	Water Supply	5,136	984	6,120
Chao Phraya	Water Demand	8,289	11,025	19,314
	Water Balance	-3,153	-10,041	-13,194
	Water Supply	12,399	4,469	16,868
Mae Klong	Water Demand	2,094	2,810	4,904
	Water Balance	10,305	1,659 21	11,964

Source : Office of the National Economic and Social Development Council (2017)

Eastern Basin

- The East Basin (New Basin) consists of East Coast Gulf Basin, Bang Pakong Basin (Bang Pakong Basin + Prachinburi Basin) and Tonle Sap Basin - The Basin covers an area of 37,549 Sq.km - The Eastern Economic Corridor (EEC) was located in the east of Thailand, which was an important area to the accelerated economic development and the 20-year national strategy of Thailand. The EEC had an area of approximately 13,266 sq.km that covering 3 provinces consisting of Chachoengsao, Chonburi, and Rayong. 22

Water Demand in The East Basin

THAILATER W Water Demand in The Eastern Economic Corridor

Water Deficit in The East Basin (2018)

	Pre	Present Condition (MCM)		
Subbasin	rainy season	dry season	Year	
Mae Nam Bang Pakong Plain Area	0.45	2.87	3.31	
Khlong Thalat	11.68	59.56	71.24	
Khlong Luang	0.00	0.00	0.00	
Khlong Yai	3.00	14.74	17.74	
Mae Nam Prasae	0.00	0.00	0.00	
East Coast Gulf (Sub - Basin 1)	118.94	224.25	343.20	
East Coast Gulf (Sub - Basin 2)	0.00	0.00	0.00	

There is a severe water shortage in the East Coast Gulf (Sub - Basin 1) that covers Chonburi and Rayong provinces. Especially in the <u>industrial sector (Industrial Estate) and</u> water consumption and Tourism.

Comparison of Average Annual Water Deficit

(Present Case VS Water Reuse Case)

STHAIWATER KU

KASETSAR

Summary of Water balance for EEC

20 Years Projection

- There is risk of water shortage in dry year therefore: two measures must be implemented.
 - Increase of water supply
 - <u>Reduction of water demand</u> through 3R

(reduce, reuse, recycle)

- An extension of pipe network to transfer water from nearby basins or reservoirs to shortage areas.
- Construction of all suitable reservoirs.

Climate Change (RCP4.5)

- Increase of rainfall variation, drought may be occur more frequent.
- Water diversion through pipeline network is very important for dry year.
- Reservoir construction and other methods to increase water supply is necessary.
 - Conjunctive use of surface and Groundwater
 - Desalination water

Timeline for measures to solve water shortage in the east and EEC

Measures

Northern and Northeastern Basins

The basin in the northeastern region of Thailand consist of the Chi, Mun and Khong basins, which are partly located in the northern region. The basin in the northern region of Thailand consist of Kok and Khong basins. In the new 22 basin system, the Kok Basin and the Khong Basin were merged and re-called the North Khong.

THAIWATER KU RAINFAIL and Runoff in the North and Northeast Basin

Average Annual Rainfall and Runoff (2003 - 2013)

Basin (25 Basin)	Rainfall (mm/year)	Runoff (MCM)
Salawin	1,321.20	7,652.07
Khong (Northern)	1,512.60	3,765.57
Khong (Northeast)	1,687.10	25,577.52
kok	1,541.10	3,959.57
Chi	1,318.30	15,648.53
Mun	1,308.20	25,775.10

Good Rainfall but few locations are suitable for reservoirs.

Source : Department of Water Resource. (2016)

Water Demand in the North and Northeast Basin (2015)

Basin (25 Basin)	Water Demand (MCM)
Salawin	805.26
Khong (Northern)	1,337.44
Khong (Northeast)	10,992.87
kok	826.55
Chi	13,094.91
Mun	16,261.66

Basin (25 Basin)	Water Demand (MCM)	Runoff (MCM)	Comparison
Salawin	805	7,652	Runoff > Water Demand
Khong (Northern)	1,337	3,766	Runoff > Water Demand
Khong (Northeast)	10,993	25,578	Runoff > Water Demand
kok	827	3,960	Runoff > Water Demand
Chi	13,095	15,649	Runoff > Water Demand
Mun	16,262	25,775	Runoff > Water Demand

Source : Department of Water Resource. (2016)

Basin (Old)

21

Southern Basin

19-is

20

20-is

21

19-1s19-is

19

22

22-is

22-1s 22-is

22**#**is

~~		
~ ~	Code	Basin (New)
> 18	18	Phetchaburi - Prachuap Khiri Khan (19 + 20)
18-is	19	Peninsula - Upper East Coast (21 + 22)
1 Shin	20	Thale Sap Songkhla
5 10-15	21	Peninsula - Lower East Coast
F	22	Peninsula - West Coast
8-is		

The basin in the south region of Thailand consist of the 7 basin in the old basin system and 5 basin in the new basin system. In the new 22 basin system, the Phetchaburi Basin and the Prachuap Khiri Khan Coast Basin were merged and re-called the Phetchaburi -Prachuap Khiri Khan. and the Peninsula - East Coast Basin and Mae Nam Tapi Basin were merged and re-called 20-is the Peninsula - Upper East Coast.

33

Rainfall and Runoff in the South Basin

Average Annual Rainfall and Runoff (2003 - 2013)

Basin (25 Basin)	Rainfall (mm/year)	Runoff (MCM)
Phetchaburi	997.20	1,618.86
Prachuap Khiri Khan Coast	1,078.10	2,093.47
Peninsula - East Coast	2,070.80	35,843.92
Mae Nam Tapi	1,803.10	11,761.34
Thale Sap Songkhla	1,949.90	6,980.99
Mae Nam Pattani	2,016.80	2,247.57
Peninsula - West Coast	2,441.50	41,681.90

Source : Department of Water Resource. (2016)

Water Demand in the South Basin (2015)

Basin (25 Basin)	Water Demand (MCM)
Phetchaburi	1,100.75
Prachuap Khiri Khan Coast	1,483.91
Peninsula - East Coast	5,783.26
Mae Nam Tapi	2,475.93
Thale Sap Songkhla	1,722.16
Mae Nam Pattani	410.04
Peninsula - West Coast	2,832.13

Basin (25 Basin)	Water Demand (MCM)	Runoff (MCM)	Comparison
Phetchaburi	1,101	1,619	Runoff > Water Demand
Prachuap Khiri Khan Coast	1,484	2,093	Runoff > Water Demand
Peninsula - East Coast	5,783	35,844	Runoff > Water Demand
Mae Nam Tapi	2,476	11,761	Runoff > Water Demand
Thale Sap Songkhla	1,722	6,981	Runoff > Water Demand
Mae Nam Pattani	410	2,248	Runoff > Water Demand
Peninsula - West Coast	2,832	41,682	Runoff > Water Demand

Source : Department of Water Resource. (2016)

Overall - No water shortage but some shortage in local tourist areas.

Comparison between water demand and runoff

National Data of Water Resources

(Office of the National Water Resources)

Real time Schematic of Water management in Chaophraya basin

Active water supply for major dams in Chaophraya basin 4 August 2021

Lower Chaophraya Flood Control

Measures for water shortage and flood risk reduction for Thailand measures

Protection of water shortage and flood in major economic areas

Water use reduction and increasing efficiency in all sectors in sensitive and risky areas for water shortage

Conjunctive use of surface water and groundwater

Better prediction of climate and impact of climate variation especially wet and dry years.

Application of new technology for water use reduction and better water supply management

